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Abstract

We present HAQAGen, a unified generative model for
resolution-invariant NIR-to-RGB colorization that balances
chromatic realism with structural fidelity. The proposed
model introduces (i) a combined loss term aligning the
global color statistics through differentiable histogram
matching, perceptual image quality measure, and feature-
based similarity to preserve texture information, (ii) lo-
cal hue–saturation priors injected via Spatially Adap-
tive Denormalization (SPADE) to stabilize chromatic re-
construction, and (iii) texture-aware supervision within a
Mamba backbone to preserve fine details. We introduce
an adaptive-resolution inference engine that further enables
high-resolution translation without sacrificing quality. Our
proposed NIR-to-RGB translation model simultaneously
enforces global color statistics and local chromatic consis-
tency, while scaling to native resolutions without compro-
mising texture fidelity or generalization. Extensive evalu-
ations on FANVID, OMSIV, VCIP2020, and RGB2NIR us-
ing different evaluation metrics demonstrate consistent im-
provements over state-of-the-art baseline methods. HAQA-
Gen produces images with sharper textures, natural colors,
attaining significant gains as per perceptual metrics. These
results position HAQAGen as a scalable and effective so-
lution for NIR-to-RGB translation across diverse imaging
scenarios.

1. Introduction
Near-Infrared (NIR) imaging unveils a hidden world be-
yond human perception, capturing important visual infor-
mation beyond the visible region, recording image infor-
mation from 780 nm to 1000 nm. This capability makes
NIR imaging indispensable in domains such as surveillance,
night vision applications [22], where it pierces through
darkness; autonomous driving [13, 16], where it enhances
visibility in adverse conditions [7]. Compared to visual
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images, NIR images substantially reduce the scattering of
small and micro-scale particles present in smoke and fog,
increasing the visibility. Despite the enormous potential,
applications of NIR imaging systems are somewhat limited
because the human visual system, trained to analyze visual
information, cannot comprehend raw infrared images. The
NIR-to-RGB translation approach bridges this gap by gen-
erating vivid, colorized images aligned with human percep-
tion. However, the process is fraught with challenges stem-
ming from the spectral and geometric disparity between the
NIR and RGB images, and the perceptual difference be-
tween these two modalities [14].

Current NIR-to-RGB translation approaches display sev-
eral predicaments restricting their practical utility. Existing
methods often suffer from textural information loss, geo-
metric aberrations, color distortions, oversmoothing or blur-
ring, and poor generalization. One pervasive issue is tex-
ture loss: many techniques generate outputs that lack the
fine details present in the NIR input, resulting in blurred or
oversmoothed images [5, 12, 19, 21]. Additionally, color
distortions further complicate colorization, as the generated
RGB images frequently display unnatural hues or inconsis-
tent mappings [14, 24, 25], reducing their overall reliability.
Moreover, the majority of existing models are constrained
by fixed input and output sizes, rendering them inflexible
for real-world applications where image dimensions vary
widely. Besides, the absence of a sufficient number of di-
verse, paired NIR-RGB dataset prevent the study of the gen-
eralizability of the methods. Compounding these issues,
evaluations are typically confined to a single dataset, cast-
ing doubt on the generalizability of these methods across
diverse scenarios. Finally, computational inefficiency limits
their deployment in time-sensitive contexts.

To address these challenges, we propose the Histogram-
Assisted Quality Aware Generative Model (HAQAGen),
a unified translation framework that (i) recovers and pre-
serves fine-grained texture via a texture-aware generation
module, (ii) enables the model to produce vivid, natural-
coloured images through histogram-based priors, (iii) gen-
eralises reliably across multiple datasets, and (iv) supports



adaptive-resolution inference for variable input sizes. Our
framework unifies these elements into a single pipeline that
achieves competitive perceptual quality and texture fidelity.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews prior work in NIR-to-RGB translation, Sec-
tion 3 details proposed architecture and objectives, Sec-
tions 4 and 5 describe the experimental setup and results,
and Section 6 concludes with limitations and future direc-
tions.

2. Related Work

NIR to RGB translation has received increasing attention
in recent years, driven by its importance in various appli-
cations [10], low-light enhancement, remote sensing, and
surveillance applications [10]. Early approaches relied on
handcrafted features and classical regression models that at-
tempted to directly map NIR pixel intensities to RGB values
[39]. These conceptually simple methods lacked robustness
to complex scene variations and failed to scale beyond nar-
row domains, highlighting the need for deep learning so-
lutions. Recent deep learning driven approaches, such as
generative and transformer-based architectures emerged as
dominant paradigms. We summarize prior works consider-
ing three key aspects: spectral translation frameworks, tex-
ture preservation mechanisms, and evaluation practices in
the subsequent sections:

GAN-based Models The first wave of deep approaches
applied adversarial learning to capture the complex map-
ping between NIR and RGB. Mehri et al. [20] employed
CycleGANs for unpaired spectral translation, enforcing cy-
cle consistency and adversarial supervision to bridge the
modality gap without paired data. [3] utilized a combination
of different loss functions in their GAN model. Yan et al.
[30] considered multi-scale features in their GAN model,
while the work [27] generated three noisy versions of the
same NIR scene to allow the GAN model to robustly learn
the features. Dou et al. [8] introduced a cycle-GAN model
that utilized distinct loss functions to improve robustness.
While effective in principle, these models often suffer from
unstable training and spectral ambiguity, leading to incon-
sistent colors.

Transformer-based Models Recently, researchers have
turned to transformer-style models to exploit long-range
dependencies to uncover the NIR-to-RGB mapping. The
prominent ColorMamba[37] [37] model augments a state-
space transformer backbone with learnable padding tokens,
local convolutional modules, and agent-based attention.
The model produces sharp boundaries and improved spec-
tral fidelity. In this work, we adopt ColorMamba modules
within our backbone but extend them with dual-branch su-
pervision and histogram-based priors. Yang et al. [34] in-
troduced a feature embedding strategy to better align sta-

tistical and semantic cues across modalities. The frame-
work improves PSNR and structural similarity by embed-
ding features at multiple resolutions. However, generaliza-
tion across unseen domains remains a challenge for these
models.

Texture Preservation in Colorization The prevalent
NIR image colorization methods are unable to retain fine-
grained texture information since NIR images lead to ge-
ometric distortions. Besides, colorized images are easily
degraded by oversmoothing. Among the works attempt-
ing to resolve this issue, Li et al. [17] proposed a bi-stream
texture-aware GAN that disentangles global structural cues
from local details, fusing them to restore high-frequency
components. Building on this, Yang et al. [32] introduced
an attention-guided network with dedicated modules for se-
mantic reasoning and texture transfer, combined through an
adaptive fusion block. Although these advances highlight
the necessity of texture retention, existing models are un-
able to preserve finer texture details and often lack scalabil-
ity to diverse resolutions.

Evaluation and Generalization Conventional metrics,
such as PSNR and SSIM, for quantifying fidelity of the gen-
erated RGB images, generally measure the pixelwise simi-
larity, rather than the do not perceptual fidelity. To address
this gap, Liu et al. [15] developed a deep image quality as-
sessment framework that jointly considers texture, contrast,
and color realism. Besides, most models are benchmarked
on a single dataset, raising concerns about domain overfit-
ting. Yang et al. [18] reported how validating on multiple
datasets leads to improved robustness, underscoring the im-
portance of cross-domain generalization.

Although generative models, particularly GANs and
transformer models utilizing domain-dependent loss func-
tions, have advanced the state-of-the-art, three fundamental
challenges remain. (i) retaining fine-grained texture fidelity
on par with high-frequency fusion networks, (ii) generating
realistically coloured images for both local and global re-
gions, and (iii) scaling seamlessly to arbitrary resolutions
while ensuring cross-dataset generalization. Our proposed
framework resolves these predicaments by unifying diverse
loss terms, enforcing retention of texture information, per-
ceptual image quality, and histogram alignment, and in-
troducing an efficient, adaptive-resolution engine capable
of translating images/patches of varying shapes. To our
knowledge, this is the first NIR-to-RGB system that simul-
taneously enforces global color statistics and local chro-
matic consistency, while scaling to native resolutions with-
out compromising texture fidelity or generalization.

3. Methodology
We envisage approaches for the translation of a single-
channel NIR image xnir ∈ RH×W×1 to a three-channel



RGB image ŷrgb ∈ RH×W×3. Given paired supervision
(xnir,yrgb), we learn a mapping FΘ : xnir 7→ ŷrgb by mini-
mizing a composite objective that balances (i) photometric
and perceptual fidelity and (ii) chromatic realism under the
inherent spectral ambiguity of NIR→RGB. We denote the
ground-truth HSV (hue/saturation/value) as yhsv = Ψ(yrgb)
and the model’s auxiliary prediction as ŷhsv. Colour-space
conventions. Unless stated otherwise, images are in sRGB
and linearly scaled to [0, 1]; HSV is computed from sRGB
via Ψ(·) and used for auxiliary supervision and SPADE con-
ditioning [23]. Losses that are defined “per channel” default
to sRGB channels.
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Figure 1. Proposed framework. NIR features feed two branches:
an HSV Predictor and an RGB Reconstruction network. HSV
guides the RGB decoder via SPADE [23], with dual discrimina-
tors and multi-term losses ensuring realism and consistency.

3.1. Backbone and Overall Design
Mamba-based encoder–decoder. We adopt Color-
Mamba [37] as the visual backbone for efficient represen-
tation learning while retaining long-range dependencies.
Let E and D denote the shared encoder and decoder blocks,
respectively.

Dual-branch generation with SPADE conditioning [23].
We introduce a dual generator G = {GA, GB}: GA is the
RGB branch that predicts ŷrgb, and GB is an HSV-prior
branch that regresses a dense hue–saturation–value field
ŷhsv = GB(xnir) from the same input. To convey local
chromatic priors into GA, we inject ŷhsv into every decoder
stage via SPADE-ResNet modulation [28]: for a decoder
feature map F ∈ Rh×w×c we apply

F̂ = γ(ŷhsv)⊙ F + β∗(ŷhsv), (1)

where γ(·), β∗(·) are lightweight convolution blocks, and⊙
denotes Hadamard product. Eq. (1) equips GA with region-
aware colour cues while the backbone supplies geometry
and texture.

3.2. Learning Objective
Our objective comprises an adversarial tier that attempts to
achieve naturalness in both colour spaces and a reconstruc-

tion tier that aligns texture, semantics, and global colour
statistics.

Adversarial tier. Two PatchGAN discriminators
(DRGB, DHSV) operate on ŷrgb and ŷhsv respectively, enforc-
ing complementary constraints on luminance/chrominance.
We use the hinge adversarial loss with 70×70 receptive
fields, spectral normalization on D, and a 1:1 G:D update
ratio. For c∈{RGB,HSV},
LG,c

GAN = −E
[
Dc(ŷc)

]
, (2)

LD,c
GAN = E

[
max(0, 1−Dc(yc))

]
+ E

[
max(0, 1 +Dc(ŷc))

]
,

and LG
GAN =

∑
c L

G,c
GAN, LD

GAN =
∑

c L
D,c
GAN. Supervising

RGB and HSV with distinct critics makes hue failures de-
tectable even when luminance appears plausible.

HAQAGen reconstruction tier. We regularize with a
multi-purpose feature- and statistics-aware loss

Lrec(ŷ,y) = α ∥f(ŷ)− f(y)∥22 + γ
[
1− cos(f(ŷ), f(y))

]︸ ︷︷ ︸
task-specific texture basis (frozen autoencoder)

+ β ∥CDF(ŷ)− CDF(y)∥1︸ ︷︷ ︸
global colour prior (differentiable CDF)

+ δ ∥g(ŷ)− g(y)∥22︸ ︷︷ ︸
perceptual mid-level semantics (VGG-19)

(3)
with (α, β, γ, δ) = (1.0, 1.5, 1.0, 0.2). Here f(·) is a frozen
four-layer autoencoder capturing task-specific textural fea-
tures, and g(·) extracts relu4 2 activations from VGG-19.
The autoencoder terms stabilize high-frequency detail; the
VGG term anchors semantic structure; the CDF term com-
bats colour drift.

Differentiable histogram loss. Following [2], we compute
a soft histogram h ∈ RB for each sRGB channel with tem-
perature τ and bin centers {cb}Bb=1: hb =

1
N

∑N
i=1 kτ (ŷi −

cb), where kτ is a smooth kernel (e.g., triangular or logis-
tic); the CDF is H with Hb =

∑
j≤b hj . We set B=64

and τ=0.02 by default (see sensitivity in Sec. 5). We at-
tempt to penalize the mismatch between output and target
CDFs channel-wise and average across channels using ℓ1
norm. The loss term yields stable, smooth gradients that
align global chromatic statistics without distorting the local
structure.

Full objective:

LG = λadv LG
GAN + λmse[MSE(ŷrgb,yrgb) + MSE(ŷhsv,yhsv)]

+ λfeat[Lrec(ŷrgb,yrgb) + Lrec(ŷhsv,yhsv)] ,

LD = LD
GAN.

(4)

Texture-Aware Feature Enhancement Rather than rely-
ing solely on pixel losses, we capture high-level, intermedi-
ate representations that correlate with human sensitivity to



Algorithm 1 Dynamic Patching – Sliding-Window Infer-
ence
Require: NIR image I; model M ; patch size P ; overlap O
Ensure: RGB image O

1: S ← P −O ▷ stride
2: Pad I to cover multiples of S
3: Compute grid {(yi, xi)}Ni=1 of patch origins
4: Build feather mask M ∈ RP×P

5: Initialize accumulators Opad,Wpad ← 0
6: for i = 1 . . . N do
7: Extract patch pi ← I[yi : yi + P, xi : xi + P ]
8: Predict ŷi ←M(pi)
9: Add ŷi ⊙M into Opad

10: Add M into Wpad

11: end for
12: Normalize Opad ← Opad ⊘Wpad

13: Crop to original size and return O

edges and micro-texture. The feature similarity loss Lrec di-
vides (ŷ,y) includes two complementary terms: (i) a frozen
autoencoder f(·) that captures task-specific fine structure
via ℓ2 and cosine similarity; and (ii) a VGG-19 encoder g(·)
capturing mid-level semantics via ℓ2. All feature losses op-
erate on 256×256 patches during training for stability, and
over full-resolution outputs at inference for fidelity. Autoen-
coder pretraining. The texture autoencoder is trained once
on the union of training splits (no test images) using an ℓ2
reconstruction objective on 256×256 patches; after conver-
gence, it is frozen and reused across all experiments to avoid
dataset-specific leakage. Inputs are scaled to [0, 1]; Autoen-
coder feature vectors are instance-normalized before com-
puting Eq. (3).

Global - Local Colour Guidance Since the NIR images
generally lack chromatic cues, purely local criteria are in-
sufficient. To resolve this issue, our model melds: (i) a
global differentiable CDF loss (Eq. 3) that aligns global
colour statistics, and (ii) local HSV priors injected through
SPADE [23] (Eq. 1) so that decoder features are modulated
by spatially varying hue/saturation hints. This combina-
tion ensures identical NIR intensities correspond to differ-
ent materials (e.g., foliage vs. rock), yielding globally real-
istic and locally coherent colourization.

3.3. Adaptive-Resolution Inference
Since NIR images are generally high-resolution, naı̈ve re-
sizing to 256× 256 introduces irreversible blur and texture
loss. We therefore adopt a resolution-agnostic pipeline con-
taining three components:

(i) Patch-based training. We optimize on overlapping
256×256 cropped patches to learn translation locally while
regularizing with global terms (CDF/perceptual).

(ii) Sliding-window inference. At test time, we tile the im-
age into overlapping patches of size P = 256 with stride
S ∈ {222, 240} (overlap O = P−S), process each patch
independently with (GA, GB), and recompose. We ad-
ditionally report a sensitivity sweep over S and a simple
seam-energy diagnostic (gradient variance across patch bor-
ders) in Sec. 5.

(iii) Feather blending. Let pi be the i-th output patch and
M ∈ RP×P a separable 2-D Hanning mask. We accumu-
late Opad += pi ⊙M and the weights Wpad += M, then
normalize O = crop

(
Opad ⊘Wpad

)
, where ⊘ is element-

wise division. This eliminates seam artifacts and preserves
edge continuity.

Content-aware downscaling (mitigating uniform-patch
bias). Large scenes often over-sample local regions that
do not contain detailed texture information (e.g., sky), cre-
ating bias in training. We therefore isotropically clamp the
long side to ≤ 512 during training-time cropping (preserv-
ing aspect ratio), improving semantic diversity of patches
and stabilizing optimization.

Network Heads and Discriminators HSV prior branch
(GB). A compact depthwise-separable CNN ( ≈4M
params ) regresses ŷhsv. Texture encoder f(·). A frozen,
lightweight 4-layer autoencoder (no skips) provides the tex-
ture basis in Eq. (3). Dual critics. DRGB and DHSV are
70×70 PatchGANs sharing all weights except the first conv
layer to respect channel semantics. All images are treated
as sRGB in [0, 1]; HSV targets are obtained via Ψ(·) from
sRGB.

4. Experimental Setup & Implementation De-
tails

Datasets We evaluate HAQAGEN on four public bench-
marks spanning faces, urban/outdoor scenes, and mixed en-
vironments: FANVID [9], OMSIV [26], VCIP2020 [33],
and RGB2NIR [4]. FANVID contains 5,144 paired VIS–
NIR images (700–800 nm) at 2048×1536, emphasizing fa-
cial imagery and dynamic scenes. OMSIV contains 532
NIR–RGB pairs at 580×320 covering varied outdoor set-
tings. VCIP2020 comprises 400 pairs at 256×256 across
indoor/outdoor scenes. RGB2NIR includes 477 TIFF im-
age pairs with variable resolution (up to 1024×768) over
nine categories (countryside, field, forest, indoor, mountain,
old buildings, streets, urban, water). Table 1 summarizes
statistics and splits. Unless specified, we use official splits;
otherwise, we adopt 80/10/10 train/val/test without scene
overlap.

Training protocol. Unless stated otherwise, we train for
50 epochs on random 2562 crops with AdamW (β1=0.5,



Figure 2. Comparison of FANVID dataset: (1) NIR input, (2) ground-truth RGB, (3) prediction with resizing (blurred), (4) prediction with
adaptive resolution (sharper texture, better color).
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Figure 3. Adaptive patching: stride-based tiling, patch-wise colorization, and feathered stitching for seamless RGB output.

β2=0.999, weight decay 10−4) and cosine learning rate de-
cay (1 × 10−4 → 1 × 10−6). Training is performed in
mixed precision (AMP, fp16) with a global batch size of
16 across four RTX 4090 GPUs. The composite objective
weights are set to {λMSE, λfeat, λadv}=15:15:1, balancing
distortion, feature, and adversarial terms (see Sec. 3). All
hyperparameters match the implementation described in the
manuscript, and normalizations and colour-space conver-
sions follow Sec. 4.

4.1. Preprocessing and Augmentation

We convert RGB images to linear sRGB, then perform min-
max normalization to convert both modalities to [0, 1]. We
also apply histogram equalization to the NIR channel to re-
duce illumination bias prior to training. Ground-truth RGB
is converted to HSV (for colour-consistency checks), while
predicted RGB is mapped to sRGB→LAB for perceptual
losses. Unless stated otherwise, quantitative metrics are
computed on linear sRGB.
Data augmentation. We employ random horizontal flips
(p=0.5), 90◦ rotations, and HSV-saturation jitter (±10%)
on the reference RGB only. For high-resolution datasets



Dataset Type #Pairs Train / Val / Test Modal Res. Bit depth Year

VCIP2020 indoor/outdoor 400 320 / 40 / 40 256× 256 8 2020
FANVID faces & urban 5144 4100 / 514 / 530 2048× 1536 8 2024
OMSIV outdoor 532 426 / 53 / 53 580× 320 8 2017
RGB2NIR mixed scenes 477 382 / 48 / 47 var. (≤ 1024× 768) 16 2011

Table 1. Dataset statistics and splits. Resolution reports the modal native size; “var.” indicates multiple aspect ratios.

(FANVID, RGB2NIR), we additionally sample random
384×384 crops to encourage scale robustness prior to
256×256 patch formation.
Inference at Arbitrary Resolution We adopt sliding-
window inference with feather blending (Sec. 3.3) to avoid
loss of detailed information due to naı̈ve resizing. We
consider patch size P=256; stride S ∈ {222, 240} (over-
lap 16–34 px); Hanning feather masks for seamless stitch-
ing; reflective padding for small borders. The approach
enables resolution-agnostic testing with preserved textures
and clean seams. Representative qualitative examples dis-
played in Figs. 4 and 5 underlines that HAQAGen not only
preserves the detailed information, but also matches the
color, and geometric information.

Evaluation Protocol and Metrics. We evaluate our model
using four complementary metrics. Peak Signal-to-Noise
Ratio (PSNR) [11] measures pixelwise fidelity as PSNR =

10 · log10
(

MAX2
I

MSE

)
with MSE = 1

N

∑
i(xi − yi)

2, where
MAXI is the intensity range. Structural Similarity Index
(SSIM) [11] captures luminance, contrast, and structural
consistency via SSIM(x, y) =

(2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

,

with µ, σ2 denoting local means and variances, and σxy

the covariance. Angular Error (AE) [1] quantifies chro-
matic accuracy as AE(p, g) = cos−1

(
p·g

∥p∥∥g∥

)
, measur-

ing hue differences while remaining invariant to intensity
scaling. Finally, Learned Perceptual Image Patch Similar-
ity (LPIPS) [38] estimates perceptual distance by compar-
ing deep features, LPIPS(x, y) =

∑
l

1
HlWl

∑
h,w ∥wl ⊙

(ϕl(x)hw − ϕl(y)hw) ∥22, where ϕl are pretrained features
and wl are learned channel weights. Together, PSNR and
SSIM assess fidelity and structure, AE evaluates chromatic
alignment, and LPIPS measures perceptual quality, holisti-
cally covering most perspectives holistically.

Baselines & Reproduction We benchmark against three
categories of baselines: (i) GAN-based methods (e.g., Cy-
cleGAN [20]) trained with paired or unpaired NIR–RGB
supervision; (ii) Transformer/ state-space models such as
ColorMamba [37], which we adopt as our backbone; and
(iii) Texture-aware/attention models (e.g., MPFNet [34],
AttentionGAN [32]) that explicitly model texture or seman-
tic priors.

For fairness, all baselines are retrained (when open-

source code is available) using our unified preprocessing
pipeline and training schedule, with input resizing handled
consistently: 2562 for VCIP2020/OMSIV, adaptive sliding-
window for FANVID/RGB2NIR. When official pre-trained
weights are used, we re-evaluate them under our metrics
(PSNR, SSIM, AE, LPIPS) to ensure comparability. This
harmonized protocol guarantees that reported gains stem
from model design rather than differences in data process-
ing or evaluation.

5. Results and Discussion
Table 2 benchmarks HAQAGEN against twelve SOTA
methods on VCIP2020. Our model achieves the best PSNR
(24.96 dB) and the lowest LPIPS (0.18), while matching the
top SSIM (0.71). Although AE is marginally higher than
ColorMamba (2.96 vs. 2.81), visual inspection in Fig. 4
indicates that this trade-off correlates with richer chroma
and sharper textures. Across the broader set of baselines,
HAQAGEN reduces AE by at least 23.3% (vs. SST) and
LPIPS by 34.6% (vs. NIR-GNN), indicating strong percep-
tual fidelity.

Table 2. Quantitative results on VCIP2020. Best in bold.

Methods PSNR(↑) SSIM(↑) AE(↓) LPIPS(↓)
SST [30] 14.26 0.57 5.61 0.361
NIR-GNN [29] 17.50 0.60 5.22 0.384
MFF [30] 17.39 0.61 4.69 0.318
ATCGAN [31] 19.59 0.59 4.33 0.295
Restormer [35] 19.43 0.54 4.41 0.267
DRSformer [6] 20.18 0.56 4.22 0.254
MPFNet [34] 22.14 0.63 3.68 0.253
CoColor [33] 23.54 0.69 2.68 0.233
MCFNet [36] 20.34 0.61 3.79 0.208
ColorMamba [37] 24.56 0.71 2.81 0.212
HAQAGEN 24.96 0.71 2.96 0.18

Cross-Dataset Generalization & Adaptive Resolu-
tion We study generalization across FANVID, OMSIV,
VCIP2020, and RGB2NIR using fixed-size vs. adaptive
sliding-window inference. Fig. 5 illustrates that patch-wise
inference better preserves texture and tonal continuity on
high-resolution imagery. Quantitatively (Table 3), adaptive
inference delivers consistent LPIPS and AE gains on FAN-
VID/OMSIV/RGB2NIR. On VCIP2020, where the target
resolution matches the training crop, global resizing slightly



Figure 4. Qualitative comparison on the VCIP2020 dataset [33]: (1) NIR input, (2) DRSformer [6], (3) CoColor [33], (4) ColorMamba
[37], (5) our proposed HAQAGen, and (6) ground-truth RGB. HAQAGen achieves sharper textures, more natural chromatic distributions,
and better structural fidelity compared to prior baselines.

favours PSNR (consistent with reduced blending overhead),
yet HAQAGEN still achieves the best LPIPS.

Table 3. Cross-dataset comparison of HAQAGEN vs. Color-
Mamba. Best per metric in bold.

Dataset Method PSNR ↑ SSIM ↑ AE ↓ LPIPS ↓
FANVID[9] ColorMamba 17.63 0.65 26.79 0.64
FANVID[9] HAQAGEN 18.4 0.724 4.65 0.52
OMSIV [26] ColorMamba 17.61 0.58 25.87 0.52
OMSIV[26] HAQAGEN 16.67 0.61 6.90 0.37
VCIP2020 [33] ColorMamba 24.56 0.71 2.81 0.21
VCIP2020[33] HAQAGEN 24.96 0.71 2.96 0.18
RGB2NIR [4] ColorMamba 17.22 0.58 29.30 0.61
RGB2NIR [4] HAQAGEN 15.97 0.60 7.41 0.38

Qualitative Analysis Fig. 4 contrasts ColorMamba with
HAQAGEN (using Lrec). We consistently observe:
1. Texture Fidelity: Fine details (foliage, contours, fabric)

are better preserved, with reduced oversmoothing rela-
tive to adversarial-only baselines.

2. Chromatic Realism: The CDF prior curbs tinting and
enforces natural tonal distributions across materials.

3. Edge Consistency: Boundaries at depth changes re-
main aligned after colourization, suggesting SPADE-
conditioned decoding improves local hue assignment.
Similar behaviour is visible at larger scales.

Ablation Studies Table 4 evaluates reconstruction-loss
variants on VCIP2020. Replacing the baseline objective
(MSE+Cosine+SSIM) with VGG Perceptual alone reduces
PSNR by 1.12 dB and nearly doubles AE, indicating that

perceptual loss without statistics/texture guidance is insuffi-
cient. Histogram-only narrows AE to 3.66 but lacks sharp-
ness (SSIM 0.68). Our composite Lrec provides the best
PSNR while balancing AE and SSIM, confirming the com-
plementarity of texture features (AE, cosine) and global
statistics (CDF). The extended ablation in the second ta-
ble corroborates that removing either the CDF term or the
AE-based texture supervision degrades colour or structure,
respectively.

Loss Variant PSNR↑ SSIM↑ AE↓

MSE + Cosine (ColorMamba) 24.56 0.71 2.81
+ VGG perceptual 23.63 0.70 4.32
+ Histogram only 23.81 0.68 3.66
+ Texture (f ) only 24.12 0.69 3.01

Full Lrec (ours) 24.96 0.71 2.96

Table 4. Ablation on reconstruction losses (VCIP2020). Compos-
ite Lrec balances fidelity, color, and structure.

Table 5. Ablation on the HSV-SPADE branch. Removing HSV-
SPADE conditioning degrades AE and SSIM, confirming that spa-
tial hue priors improve local chromatic consistency.

Variant PSNR ↑ SSIM ↑ AE ↓
Without HSV-SPADE branch 24.21 0.69 3.52
With HSV-SPADE (Ours) 24.96 0.71 2.96



Figure 5. OMSIV [26]: Col. 1 NIR; Col. 2 GT; Col. 3 ColorMamba (resized); Col. 4 HAQAGEN (adaptive). Sliding-window inference
preserves texture and tone continuity in high-resolution settings, outperforming global resizing.

Qualitative Gallery Resizing predictions to the original
resolution introduces blur and geometric distortion, espe-
cially on FANVID and OMSIV. Adaptive patching avoids
this by predicting at native scale, preserving edges and
micro-texture.

Beyond quantitative metrics and ablation results, it is im-
portant to emphasize the broader implications of HAQA-
Gen’s performance. The improvements in perceptual qual-
ity (LPIPS), chromatic fidelity (AE), and structural preser-
vation (SSIM) are not merely incremental gains but repre-
sent a step toward bridging the gap between synthetic trans-
lation and real-world usability. The qualitative comparisons
(Figures 4–2) consistently show that HAQAGen avoids the
common pitfalls of over-smoothing and spectral ambigu-
ity that plague prior methods. Instead, it generates outputs
that maintain edge sharpness and textural richness, quali-
ties that directly impact downstream tasks such as detection
and recognition. The robustness across datasets of varying
resolution and content diversity further highlights the scala-
bility of the framework. Collectively, these findings validate
HAQAGen not only as a strong benchmark model for NIR-
to-RGB translation but also as a practical tool for real-world
deployment where both perceptual realism and structural fi-
delity are paramount.

6. Conclusion

In this paper, we introduced HAQAGen, a unified
histogram-assisted framework that advances the frontier of
NIR-to-RGB spectral translation. By jointly leveraging
global colour statistics, HSV-based chromatic priors, and
texture-aware feature supervision within a Mamba back-

bone, HAQAGen resolves the trade-off between chromatic
realism and textural fidelity. Extensive experiments across
four diverse benchmarks demonstrated noticeable improve-
ment: quantitatively, HAQAGen achieves gains of up to
1.63 dB in PSNR and 15.09% improvement in LPIPS over
state-of-the-art methods; qualitatively, it produces outputs
with vivid colours, sharp structural boundaries, and reli-
able preservation of scene detail across varying scales and
environments. Moreover, the adaptive-resolution inference
engine ensures scalability to high-resolution imagery, en-
abling real-time deployment on commodity hardware with-
out sacrificing quality.

Beyond numerical performance, our analyses highlight
HAQAGen’s practical impact. Its robustness across dis-
parate datasets and strong compatibility with downstream
tasks (e.g., object detection) indicate that NIR-to-RGB
translation can evolve from a purely generative challenge
to a foundation for actionable perception in adverse visual
conditions.

Looking forward, several directions hold promise: (i) ex-
ploring self-supervised colour priors to reduce reliance on
paired RGB supervision, (ii) distilling the dual-branch ar-
chitecture into ultra-lightweight variants tailored for edge
devices, and (iii) joint optimisation with higher-level tasks
such as segmentation, tracking, and low-light enhancement
to enable end-to-end NIR-aware vision systems.

We believe HAQAGen establishes a strong step toward
practical and scalable NIR-to-RGB colourisation, laying the
groundwork for next-generation perception in autonomous
systems, security, remote sensing, and other human-centric
applications where visibility is mission-critical.
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